# VÄSTERBROLEDEN 

 DEN NYA GATULEDEN MELLAN KUNGSHOLMEN OCH SÖDERMALM$$
19 \frac{20}{11} 35
$$

# VÄSTERBROLEDEN DEN NYA GATULEDEN <br> MELLAN <br> KUNGSHOLMEN OCH <br> SÖDERMALM 



TRYCKT HOS
AM. LUNDQUIST BOKTRYCKERI
S TOCKHOLM
1935
I N NEHALLSFÖRTECKNING
Sid.
VÄSTERBROLEDEN ..... 9
I. FÖrberedande utredningar, beslut om trafikledens utrö- rande ..... 9
II. BROARNA ÖVER RIDDARFJÅRDEN OCH PÅLSUNDET SAMT FÖRBINDELSE- gatan på långholmen ..... 17

1. Broärendenas behandling vid vattendomstolen ..... 17
2. Allmänna riktlinjer för arbetenas handhavande ..... 18
3. Bron över Riddarfjärden, , Västerbron, ..... 20
A. Allmänna dispositioner och huvudmått ..... 20
B. Underbyggnaden ..... 22
C. Stålöverbyggnaden ..... 26
4. Bågarna ..... 28
5. Bågarnas påbyggnad och viadukterna ..... 37
6. Material och tillverkning ..... 42
7. Svetsningsarbetet ..... 44
8. Mâlning ..... 49
D. Brobanan ..... 52
E. Belastningsantaganden ..... 54
F. Provbelastning ..... 56
G. Gatubelysning och sjöfartssignaler ..... 57
9. Pâlsundsbron ..... 58
A. Underbyggnaden ..... 58
B. Överbyggnaden ..... 60
C. Beräkningsgrunder och provbelastning ..... 68
10. Förbindelsegatan pả Långholmsgatan ..... 70
11. Arbetsstyrka, entreprenörer och leverantörer ..... 71
12. Kostnader ..... 73
13. Arbetsledning ..... 75
III. tillfarterna ..... 79
14. Södra tillfarten ..... 79
15. Norra tillfarten ..... 79
A. Arbeten å Rålambstorg samt mellan denna plats och Västerbron ..... 84
16. Terrassering ..... 84
17. Beläggning ..... 86
18. Viadukten över Rålambstorg ..... 87
B. Arbeten å Drottningholmsvägen och Fridhemsplan ..... 92
I. Terassering ..... 92
19. Beläggning ..... 94
20. Viadukten över Drottningholmsvägen ..... 94
21. Arbetsledning ..... 99
IV. SPÅRVÄGSANLÄGGNINGEN ..... 101
BILAGA. KONSTRUKTIONSSYSTEM FOR VÄSTERBRONS BÅGAR OCH GRUND- DRAGEN AV DERAS STATISKA BERĂKNING ..... 103

TRAFIKLEDEN INVIGES DEN 20 NOVEMBER

1935
VÄSTERBROLEDEN


## V A S T ER B R O L E D E N

DEN 2 FEBRUARI 193 I beslöto stadsfullmäktige utföra den gatutrafikled mellan Kungsholmen och Södermalm, som nu är färdig att öppnas för trafik. Leden skulle utgå från Drottningholmsvägen vid korsningen med Hant-verkare- och Fridhemsgatorna, korsa Riddarfjärden med bro från Rålambshov till Långholmen samt övergå Pålsundet med bro i direkt anslutning till Långholmsgatan på Södermalm. Gatubredden skulle bliva 24 meter, utom å tillfarterna på Kungsholmen, där den enligt det antagna förslaget växlade mellan 19 och 28 meter. Läget för bron över Riddarfjärden hade redan i juni 1929 varit föremål för stadsfullmäktiges avgörande, i samband med beslut om anordnande av en allmän tävlan om förslag till brons utformning, och därvid bestämts till sträckningen från området väster om Rålambshovs gård på Kungsholmen till området öster om centralfängelset på Långholmen. Bron skulle utföras som bågbro av stål i två spann och erhålla en fri höjd över medelvattenytan av 24 meter på en bredd av 50 meter vinkelrätt emot farleden. Pålsundsbron skulle utföras med en båge över Pålsundet, byggd liksom anslutande viadukter av stål, och med en största fri höjd av 13 meter över medelvattenytan. För ledens utförande beviljade stadsfullmäktige ett anslag av 14.948 .000 kronor, att utgå av lånemedel.

## I. FÖRBEREDANDE UTREDNINGAR, BESLUT OM TRAFIKLEDENS UTFÖRANDE.

$\mathrm{F}_{\text {örslag till gatubro mellan Kungsholmen och Långhol- }}$ men framlades första gången år 1903. En dylik bro ingick nämligen i det förslag till ny infartslinje för västra stambanan över Långholmen och Smedsudden, som efter stads-
fullmäktiges uppdrag då avgavs av ingenjörsfirman Gleim \& Eyde. Förslaget, som avsåg en gatubro förlagd öster eller alternativt väster om den på nämnda plats ifrågasatta järnvägsbron med anslutning på Södermalm till Hornsgatan vid Gubbhusgatan och på Kungsholmen till Mariebergsgatan, framträdde emellertid icke som uttryck för något då föreliggande aktuellt behov utan torde huvudsakligen hava haft till uppgift att påvisa möjligheten att anordna en broförbindelse i förevarande läge. Projektet upptogs i den plan till ändrad infartslinje för stambanan, som àr 1905 framlades av den s. k. igor års bangårdskommitté, men kom härefter att för lång tid vila, enär tanken på järnvägens omläggning på angivet sätt under en lång följd av år sköts åt sidan.

Först år 1923 upptogs brofrågan på nytt. I samband med godkännandet av det då föreliggande bangårdsavtalet uppdrogo nämligen stadsfullmäktige åt stadsplanenämnden att i samarbete med stadens trafikkommission utreda Smedsuddslinjens lämpligaste sträckning och i samband därmed även klarlägga frågan om ny gatubro mellan Långholmen och Smedsudden. Utredningen verkställdes av trafikkommissionen och framlades i juni 1925. Den omfattade tre alternativa lägen för gatubron, nämligen öster eller väster om järnvägsbron samt ovanpå denna med anslutning på Södermalm till Varvsgatan, Pålsundsgatan eller Långholmsgatan och på Kungsholmen till Mariebergsgatan. Kommissionen förordade läget öster om järnvägen och den södra anknytningen i Långholmsgatan.

Förslaget upptogs till fortsatt behandling av stadsplanenämnden, som i slutet av år 1927 framlade ett i vissa hänseenden reviderat förslag. Nämnden anslöt sig i princip till trafikkommissionens ståndpunkt i fråga om gatuledens förläggning. I likhet med kommissionen ansåg nämnden sålunda, att gatubron borde förläggas till östra sidan och i omedelbar anslutning till den tänkta järnvägsbron. Trafikleden borde givas en bredd av 26 meter och utgå från Drottningholmsvägen vid korsningen med Hantverkaregatan samt på Södermalm ansluta till Långholmsgatan. Fria höjden under bron över Riddarfjärden borde i enlighet med


Fig. I. Västerbroleden. (Nedtill Liljeholmsbron) Flygfoto O. Bladh.
av hamnförvaltningen framställd önskan bliva 26 meter över medelvattenytan.

Emot detta stadsplanenämndens förslag framställdes vid den följande prövningen vissa erinringar. Sålunda uttalade sig gatukontoret för en förläggning av bron över Riddarfjärden i riktning mot S:t Eriksgatan, vilket från enskilt håll hade ifrågasatts, och gatunämnden förklarade sig icke kunna taga slutlig ståndpunkt i ärendet, innan frågan om det rätta broläget blivit föremål för ytterligare utredning.

Med anledning härav blev frågan underkastad förnyad prövning av en för ändamålet tillsatt brodelegation, bestående av stadens vederbörande chefstjänstemän under ledning av föredragande borgarrådet.

Delegationen uttalade i sitt den I oktober 1928 avgivna utlåtande, att en östligare förläggning av bron än den av stadsplanenämnden föreslagna vore att föredraga redan med hänsyn till de trafikbehov bron närmast skulle tillgodose. Emot nämndens förslag talade även de svårigheter, som brons beröring med fängelseområdet å Långholmen och dess inriktning mot statens egendomar på Kungsholmen - Marieberg och Konradsberg - måste komma att förorsaka. Jämväl mot det av gatukontoret förordade förslaget att förlägga bron i riktning mot S :t Eriksgatan kunde betänkligheter anföras, såväl med hänsyn till det betydande ingrepp i stadsbilden, ett dylikt byggnadsverk måste komma att innebära, som ur trafiksynpunkt, enär bron icke erbjöde trafiken så bekväma anslutningar, som önskligt vore. På grund av dessa omständigheter ansåg sig brodelegationen böra undersöka ett nytt broläge, varom förslag framställts inom delegationen och som avsåg brons förläggande över Rålambshov från den plats sydväst om Rålambshovs gård, där vattenledningsbanken lämnar stranden, till området öster om Långholmsfängelsets gräns.

Delegationen ansåg detta broläge ur trafik- och den allmänna stadsbildens synpunkt ävensom med hänsyn till stadsplanens utformning vara att föredraga framför de förut nämnda. Härjämte undvekos de svårigheter ur marksynpunkt, som broläget över Smedsudden kunde befaras komma att medföra, även om markfrågan också i det nya
förslaget förutsatte vissa uppgörelser. Trafikleden borde givas en bredd av 22 meter och bron över Riddarfjärden en fri höjd av 24 meter över vattnet.

Kostnaderna för hela trafikleden, utförd enligt dessa förutsättningar, beräknades till 14.635 .000 kronor. Smedsuddsalternativet beräknades av delegationen kosta 15.105 .000 kronor och S:t Eriksgatsalternativet 15.480 .000 kronor. Det vidare arbetet för åstadkommande av den nya broförbindelsen ansågs i enlighet med tidigare framställda förslag böra innefatta en fri tävlan om själva bron över Riddarfjärden.

Rålambshovsalternativet tillstyrktes av alla hörda myndigheter utom drätselnämnden, som ansåg att frågan om broläget icke syntes tillfredsställande utredd, utan att en tävlan borde avse såväl Smedsudds- som Rålambshovsläget. Stadsfullmäktige godtogo dock delegationens förslag och beslöto den 21 juni 1929 att anlägga en bro från Kungsholmen till Södermalm över Långholmen samt uppdraga åt hamnstyrelsen att anordna en allmän tävlan angående denna broförbindelse, ävensom att på grund av tävlingsresultatet utarbeta definitivt förslag till broarna över Pålsundet och Riddarfjärden jämte anslutande viadukter och förelägga stadsfullmäktige detta förslag med erforderliga kostnadsberäkningar.

Vid den tävlan, som med anledning härav anordnades, inkommo 72 förslag, därav åtskilliga med en eller flera varianter eller alternativ. Genom att utnyttja ett norr om farleden och i höjd med Smedsuddens yttersta spets beläget grund för en jämförelsevis billig pelargrundläggning hade flera deltagare i tävlingen föreslagit en bro med två stora, flacka, under farbanan förlagda bàgar, därav en större över farleden och det öppna vattnet mellan Långholmen och nämnda grund samt en mindre på Kungsholmssidan. Prisnämnden ansåg, att de höga krav, särskilt å monumentalitet och skönhet, som måste ställas på en bro i förevarande läge, endast kunde fyllas med nämnda brotyp. Nämndens uttalande härom torde här böra bringas i erinran. Nämnden anförde:
»Som ett självständigt byggnadsverk betraktat skulle en
sådan bro, i synnerhet om trakten kring brons landfästen hålles fri från bebyggelse, bliva av utomordentligt god verkan. Med två väldiga bågar sammanfogas de bergiga stränderna, och över dem förbinder brobanan höjderna med en jämnt fortlöpande, svagt böjd, av uppstående konstruktioner obruten linje. För sjöfarten är gatuledens kulminationspunkt över den stora bågens hjässa det vida synliga orienteringsmärket för den gynnsammaste genomfartsöppningen. Landtrafiken och sjöfarten erhålla därmed sin naturligaste och gynnsammaste korsningspunkt.

En brobyggnad av denna art och utformning måste bliva ett ingenjörstekniskt betydande byggnadsverk; det är djärvt, sant och samtidigt enkelt och naturligt, egenskaper, som måste utmärka varje konstnärligt verk. Även sedd från staden, det vill säga på ett avstånd av en till två kilometer, kommer denna brobyggnad ingalunda att te sig som en obetydlig detalj i landskapet utan draga blicken till sig, medan utsikten mot staden, ungefär från Stora Essingen, genom det mäktiga brovalvet kommer att göra ett storslaget intryck. Stockholms stadsbild med Stadshuset och Riddarholmen kommer föga att skymmas, snarare att framträda i en vacker inramning.»

I fråga om byggnadsmaterial ansåg prisnämnden stål böra föredragas, då en stålbro icke i samma mån som ett massivt byggnadsverk tränger sig fram i landskapet utan tvärtom verkar lätt och elegant. En stålbro vore även tryggare i utförandet och därjämte billigare.

I anslutning till dessa synpunkter belönade nämnden med pris endast sådana förslag, som avsågo bågbroar i två olika stora spann med bågarna förlagda helt och hållet under brobanan. Fyra pris utdelades. De med de tre första prisen belönade förslagen avsågo stålbågar, utförda respektive som treledsbågar, inspända bågar med led i hjässan samt tvåledsbågar. Det med 4 :e pris belönade förslaget förutsatte betong som byggnadsmaterial.

Med beaktande av_vad prisnämnden sålunda anfört, lät hamnstyrelsen utarbeta definitivt förslag till den ifrågavarande gatubroförbindelsen och överlämnade sitt förslag till stadsfullmäktige med skrivelse den 28 oktober 1930.

Detta förslag överensstämde med avseende å planläget för bron över Riddarfjärden med det, som framlagts av brodelegationen och förut godkänts av stadsfullmäktige. I fråga om nämnda bro hade hamnstyrelsen utarbetat två olika alternativ, det ena avseende en bågbro av stål i två spann i anslutning till de prisbelönta förslagen, det andra en balkbro i sju spann, likaledes av stål. Styrelsen förordade för egen del bågbroförslaget. Vid val av konstruktionstyp för bågarna hade styrelsens konstruktörer tillsvidare stannat vid en tvåledsbåge. Det vore dock icke uteslutet, att en inspänd båge kunde erbjuda vissa fördelar framför tvåledsbågen. Hamnstyrelsen önskade därför förbehålla sig att efter närmare undersökning av nämnda förhållande träffa definitivt val av konstruktionstyp. Förslaget var jämväl vad beträffar brobredden utarbetat i två alternativ, nämligen dels med 22 meters bredd i enlighet med stadsfullmäktiges tidigare beslut, dels med 24 meters bredd. Planen för trafiklederna på Kungsholmen följde ett av stadsplanekontoret upprättat förslag, enligt vilket förbindelsegatan mellan bron och Fridhemsplan skulle framföras på en viadukt över det lågt liggande Rålambstorgsområdet och gatubredden växla mellan 19 och 28 meter.

Kostnaderna för trafikleden, utförd med 24 meters bredd, beräknades, som ovan inledningsvis angivits, till 14.948.000 kronor, fördelade på följande sätt:

Tillfartsviadukten på Kungsholmen ......... 1.850 .000 kr .
Trafikfördelningsplanet på Kungsholmen
jämte större delen av anslutningsviadukten till bron
2.362 .000 "

Tillfartsgator i terrängen på Kungsholmen Bron över Riddarfjärden
Förbindelsegatan på Långholmen
Bron över Pålsundet jämte tillfartsviadukter
410.000 "

Omläggning av vattenledningsrör och partiell bortmuddring av vattenledningsban-
ken vid Kungsholms strand .................. 200.000 》
Fyrbelysning .................................... 40.000 »
Bortsprängning av grund .................... 25.000
Ny båtbrygga .................................... 20.000
Kronor 14.948.000

Häri ingingo icke kostnaderna för belysnings- och spårvägsanläggningar, vilka beräknades komma att utföras och bekostas av vederbörande verk.

Kostnaderna för en gatutrafikled med 22 meters bredd hade av hamnstyrelsen beräknats till 14.522 .000 kronor.

I fråga om Västerbroledens betydelse hade stadskollegiet i det utlåtande, som föregick 1929 års beslut om anläggande av en bro från Kungsholmen till Södermalm, anfört i huvudsak följande.
»Västerbron utgör en viktig och välbehövlig förbindelseled mellan stadens trafiksystem norr och söder om de skiljande vattnen. Den ansluter sig naturligt till huvudgatulederna på båda sidorna och blir därmed av betydelse för den nordsydliga trafiken överhuvudtaget, samtidigt som den kommer att stöda utvecklingen av de stora, delvis ännu obebyggda stadsdelarna i väster. Stadens topografi inbjuder till ett sammanförande av gatutrafiken i stadens centrum, en tendens, som är ägnad att medföra en alltför stark belastning av de nordsydliga förbindelserna genom Gamla staden och av tillfartsgatorna till dessa förbindelser. Att genom nya nordsydliga gatuleder motverka denna för stadens utveckling hinderliga trafikkoncentration och i stället skapa förutsättningar för en lämplig fördelning av gatutrafiken är en av stadens viktigaste trafikpolitiska uppgifter, och i sin mån torde den nya Västerbron med sina goda anslutningar till de genomgående gatulederna kunna bidraga till dess lösning. Även i relativt avlägsna stadsdelar torde den uppdelning av de olika trafikströmmarna, som den nya leden möjliggör, komma att till fördel för trafikförhållandena i centrum göra sig märkbar. Nya huvudstråk och knutpunkter för gatutrafiken komma att uppstå och påverka orienteringen av handel och näringsliv. Härmed befrämjas de decentraliserande tendenserna i stadens utveckling och den välbehövliga avlastningen av Gamla stadens genomfartsleder.»

Sedan de hörda myndigheterna tillstyrkt trafikledens anläggande i huvudsak enligt hamnstyrelsens förslag och förordat en brobredd av 24 meter, beslöto stadsfullmäktige, såsom ovan nämnts, den 2 februari 1931 utföra trafikleden
i huvudsaklig överensstämmelse härmed samt för ändamålet bevilja ovannämnda belopp, 14.948 .000 kronor. Härav beräknades 10.326 .000 kronor komma på hamnstyrelsen för utförande av de båda broarna med anslutande viadukter och landfästen, frånräknat större delen av viadukten på Kungsholmen, samt för förbindelsegatan på Långholmen och 4.622 .000 kronor på gatunämnden för utförande av tillfartsviadukten på Kungsholmen jämte tillhörande trafikfördelningsplan och tillfartsgator.

## II. BROARNA ÖVER RIDDARFJÄRDEN OCH PÅLSUNDET SAMT FÖRBINDELSEGATAN

## PA LÅNGHOLMEN.

\author{

1. BROARRENDENAS BEHANDLING VID <br> VATTENDOMSTOLEN.
}

Ienlighet med stadsfullmäktiges bemyndigande ansökte hamnstyrelsen den 6 november 1930 hos Österbygdens vattendomstol om tillstånd för staden att anlägga broarna över Riddarfjärden och Pålsundet i huvudsaklig överensstämmelse med det av stadsfullmäktige godkända förslaget. Då vattendomstolen icke fann hinder med hänsyn till allmänna intressen eller enskild rätt möta mot det ifrågasatta företaget, meddelade domstolen genom utslag den 31 mars 1931 staden tillstånd att i huvudsaklig överensstämmelse med hamnstyrelsens förslag anlägga ifrågavarande broar. Det skulle åligga staden att efter samråd med lotsstyrelsen dels å båda sidor av det södra spannet till bron över Riddarfjärden anbringa märken till utvisande ej mindre av stället för den högsta segelfria höjden än även av den del av brovalvet, där den segelfria höjden icke understiger 23 meter, dels ock anordna erforderlig belysning av samma spann till ledning för de fartyg, som efter mörkrets inbrott passera under denna del av bron.

Av de arbeten, som påvilat hamnstyrelsen, d. v. s. broarna över Riddarfjärden och Pålsundet samt förbindelsegatan på Långholmen, hava självfallet broarnas stålöverbyggnader men även deras grundläggningar ansetts böra utföras på entreprenad under hamnförvaltningens kontroll. Endast viadukternas landfästen, förbindelsegatan på Långholmen och brobanedäcken av betong med beläggning och räckverk hava ansetts böra utföras i hamnstyrelsens egen regi.

De anlitade entreprenörerna omnämnas härnedan i samband med redogörelsen för arbetenas utförande. Antagandet av entreprenaden å stålöverbyggnaden till bron över Riddarfjärden torde emellertid här böra närmare beröras, enär därvid större hänsyn togs till förhållandena på arbetsmarknaden än som vanligen är fallet. Av de inkomna anbuden å denna leverans voro två helt svenska, sex utländska och fem avgivna av svenska och utländska firmor i förening. Det lägsta anbudet var utländskt och understeg den beräknade kostnaden med omkring 1.385.000 kronor. Det lägsta svenska anbudet var omkring i.810.000 kronor högre än det utländska och översteg den av hamnstyrelsen beräknade kostnaden med omkring 425.000 kronor. Hamnstyrelsen, som givetvis icke ägde befogenhet att antaga ett så högt anbud som det svenska och som vid då rådande förhållanden på arbetsmarknaden icke heller önskade överlämna den stora leveransen helt till utlandet, hänvände sig i ärendet till stadsfullmäktige och uttalade därvid, dels att ett rent utländskt anbud icke borde komma i fråga, dels att hamnstyrelsen icke heller ansåg, att staden, för att kunna bevara arbetet helt åt landet, kunde offra ett så stort belopp, som motsvarade det lägsta svenska anbudet, enär dels detta anbud vore för högt i jämförelse med vad hamnstyrelsen förut beräknat, dels en bro kunde erhållas för betydligt lägre pris. Däremot syntes en kombination mellan svenska och utländska verkstäder medgiva såväl ett lågt pris som goda möjligheter att i stor utsträckning bereda sysselsättning åt svensk industri och svensk arbets-
kraft. Anbud av sådan innebörd förelåge, som understege de beräknade kostnaderna med ända till 650.000 kronor. Enligt uppgift från vederbörande firmor skulle med antagandet av ett av dessa anbud upp till 82 procent av kostnaderna stanna i Sverige, och av arbetstimmarna skulle enligt hamnförvaltningens beräkningar upp till 77 procent bliva svenska. Trots att antagandet av det lägsta av dessa anbud innebure ett offer från stadens sida av icke mindre än 730.000 kronor, ansåg hamnstyrelsen, att ett sảdant anbud borde antagas och hemställde om erforderligt anslag för broarbetets fullföljande i enlighet härmed.

Med hänsyn till den vid ifrågavarande tidpunkt - i början av år 1932 - rådande ekonomiska situationen i vårt land hade emellertid ifrågasatts att tillsvidare uppskjuta broarbetet. Hamnstyrelsen framhöll härtill, att flera av de föreliggande anbuden voro synnerligen förmånliga och att billigare anbud under närmaste tiden knappast torde kunna erhållas. Tvärtom ansågs det allmänt i sakkunniga kretsar, att högre priser, särskilt beträffande materialet, snart vore att förvänta. Härtill komme, att ett avbrott i arbetet skulle medföra olägenheter och extra kostnader för staden i samband med uppsägningar och omplaceringar av den vid bygget redan sysselsatta personalen. Stadsfullmäktige biföllo hamnstyrelsens framställning och beviljade de för arbetets fullföljande behövliga medlen.

Emellertid föranledde hamnstyrelsens hänvändelse till stadsfullmäktige några av anbudsgivarna att erbjuda avdrag å sina anbud, varför styrelsen ansåg sig böra lämna de firmor, vilkas anbud närmast kunde komma i fråga till antagande, tillfälle att åter genomgå anbuden och angiva de eventuella modifikationer däri, som de kunde finna lämpliga. Härav begagnade sig även firmorna, och det lägsta kombinerade anbud, som härvid inkom och som hamnstyrelsen ansåg sig böra antaga, understeg det helt svenska anbudet med omkring 770.000 kronor och den av styrelsen beräknade kostnaden med omkring 705.000 kronor. Den svenska andelen i kostnaderna beräknades nu till 77 procent. Genom antagandet av detta anbud i stället för det lägsta utländska offrade staden 680.000 kronor.

## A. Allmänna dispositioner och huvudmátt.

(Pl. 1 och 2)
I enlighet med stadsfullmäktiges beslut är Västerbron förlagd över områdena väster om Rålambshovs gård på Kungsholmen och öster om centralfängelset på Långholmen eller på mark, som redan vid beslutet om trafikledens utförande ägdes av staden. Bron är utförd som bågbro av stål i två spann, ett större över farleden intill Långholmslandet med en teoretisk spännvidd av 204 meter och ett mindre åt Kungsholmssidan med en spännvidd av 168 meter. Det större spannet har en fri höjd av 26,85 meter över medelvattenytan i hjässan, 26 meter på en bredd av 19 meter och 24 meter på en bredd av 50 meter vinkelrätt emot farleden, vilken kan anses korsa bron under $64^{\circ}$ vinkel. Det mindre spannet har en fri höjd i hjässan av 22,75 meter över medelvattenytan. Pilhöjden är i det större spannet 24,65 meter och i det mindre 20,3 meter, varför förhållandet mellan pilhöjd och spännvidd i båda fallen utgör $\frac{1}{8,3}$. Brobanans högsta punkt ligger 30,13 meter över medelvattenytan och den faller härifrån efter utjämning genom övergångskurvor med 1.000 och 7.000 meters radie i lutning $1: 28 \mathrm{mot}$ Kungsholmen och 1:25 mot Långholmen. Vattendjupet i farleden utgör cirka 20 meter under medelvattenytan. Bågarna vila på fundament av betong, belägna, ett pả grundet norr om farleden och två i strandlinjerna på Kungsholmen och Långholmen. Till bảgspannen anknyta på Kungsholmen och Långholmen balkviadukter av stålkonstruktion med 12,9 meters spannindelning.

Bron har en längd av sammanlagt 601,5 meter mellan viaduktfästena, varav

$$
\begin{aligned}
& \text { viadukten på Kungsholmen } \\
& \text { bågspannen } \\
& \text { viadukten på Långholmen }
\end{aligned}
$$

Brobanan har en nyttig bredd av 24 meter, varav körbanan 19 meteŕ och var och en av de båda gångbanorna 2,5


Fig. 2. Västerbron från sydväst. Flygfoto O, Bladh.
meter. I körbanans mitt ligga två spårvägsspår med 4 meters avstảnd från mitt till mitt och på vardera sidan därom finnes plats för tvenne körfiler. Spåren äro hela vägen åtskilda av en I, I meter bred refuge.

## B. Underbyggnaden.

Bottenformationerna vid brostället framgå av pl. 2. Det norr om farleden belägna grundet ligger på sina ställen icke mer än cirka 3 meter under medelvattenytan. Norr om grundet sjunker bottnen till omkring 17 meter under vattenytan, och söder därom bildar bottnen en ränna med som nämnt ej mindre än 20 meters vattendjup och omkring 37,5 meters djup till berget.

Bottenförhållandena hava knappast lämnat rum för någon tvekan beträffande stödfundamentens placering. Bågfästena på Kungsholmen och Långholmen hava fått sin naturliga plats i strandlinjen, och mellanpelaren har med fördel kunnat placeras å önskvärd plats på grundets södra sluttning.

Landfästen och mellanpelare bestå var för sig av tvenne av varandra oberoende betongfundament, ställda på i8 meters inbördes avstånd från mitt till mitt. Fundamenten vila överallt direkt på berget, vilket i allmänhet ligger på jämförelsevis ringa djup under vattnet. Varje fundament utgöres av en monolit, vars undre del gjutits i vatten, där djupet till berg icke medgivit länspumpning av arbetsschaktet. Övre delen av fundamenten är jämförelsevis starkt armerad medelst ytarmering överst och vid sidorna samt med en tät korsarmering i flera lager i det fetare betonglagret vid båganfangen. Vidare har i betongkroppen inlagts specialarmeringar för olika ändamål, ävensom förankringsstag för bågarnas inspänning och ankarbultar för lagerstolarnas befästande, fig. 3. Varje båge är sålunda förankrad med 8 st. 75 mm rundjärnsstag i över- resp. underkanten, och varje lagerstol är befästad med lika mảnga ankarbultar. För att underlätta monteringen och injusteringen voro stagen och bultarna inlagda och befästade i en gemensam styrram, som i sin ordning var vridbart lagrad på en


Fig. 3. Armering och ankringsbultar ; mellantelaren.
i murverket förankrad stålbock. I vattengången äro betongfundamenten klädda med huggen granit från $+3,25$ till $+5,25$.

De anslutande viadukternas fundament bestå av enkla oarmerade betongplintar ställda direkt på berget, vilket i allmänhet ligger i dagen.

Viadukternas landfästen beskrivas här nedan i samband med tillfarterna på Kungsholmen, förbindelsegatan på Långholmen och Pålsundsbron.

Bågfundamenten hava utförts i öppet schakt inom spont eller fångdamm. Fästena på Kungsholmen och västra fästet på Långholmen hava gjutits i torrhet inom fångdammar efter friläggning och pallsprängning av berget. Vid östra bågfästet pả Långholmen ligger dock berget i framkanten på så stort djup, att pallsprängning och betonggjutning till viss del mást utföras i vatten.

Mellanpelarens utförande har erbjudit åtskilligt av intresse ur grundläggningssynpunkt. Dess båda fundament hava vardera en längd av i9 meter och en bredd av 6 meter. Berget ligger här i lutning i:4 från cirka 5 meter under vattnet vid pelarens norra sida till cirka 10 meter under vattnet vid dess södra sida. Bottnen var täckt av ett intill två meter tjockt lager av grus, vilket till en början bortmuddrades med gripskopa men som på grund av lagrets


Fig. 4. Formbyggnad för mellanpelaren.
ringa tjocklek och delvis mycket hårda beskaffenhet härefter måste borttagas genom vattenspolning av dykare och uppsugning medelst ejektor. Den avtäckta bergbottnen var ganska skrovlig, varför erforderlig pallsprängning kunde inskränkas till endast mindre partier. Berget var av god beskaffenhet utom i östra fundamentets södra del, där det var trasigt och först efter ett tidsödande arbete kunde bortskaffas. De för betonggjutningen erforderliga formarna byggdes helt och hållet över vattnet på en kring de blivande fundamenten pålad träställning, från vilken de sänktes till bottnen med tillhjälp av sex i ställningen upphängda block, sedan underkanten formats efter det underliggande berget, fig. 4. För att kunna utföra undervattensgjutningen partiellt, motsvarande betongblandningsstationens produktionsförmåga, var formen genom mellanväggar uppdelad i fyra delar, tillsammans bildande tva mot varandra vända E, fig. 5. Då formarna emellan sig inneslöto tvenne rektangulära sparrum och undervattensbetongen längs väggarna uppgöts till +I , men i sparrummen till $+0,5$, und-
vekos genomgående fogar såväl i längd- som tvärled, vilket var nödvändigt med hänsyn till de skuvspänningar, för vilka murverken komma


Fig. 5. Plansektion av mellanpelarefundament. att utsättas. Alla fogar försågos med trapetsformiga förtagningar, och vinkelrätt mot pelarens längdriktning inlades en rälsarmering för att hålla ihop de olika gjutningarna.

Betongen framställdes dels i en flytande blandarstation, som betjänade två rör, dels i en fast Jägerblandare för ett tredje rör. Sedan kasunen länsats samt betongytorna uppbilats och befriats från slam, inlades bågarnas och lagerstolarnas förankringsanordningar med tillhörande stödbockar och befästades i rätt läge medelst bultar och stag. Härefter göts längs pelarens sidor en metertjock vägg upp till $+3,25$, på vilken stenbeklädnaden uppmurades till $+5,25$. Det sålunda bildade mellanrummet igöts successivt genom uppdelning medelst tvärformar i mindre, för ett gjutskift lämpliga partier, så att på översidan bildades en tandad förtagning i betongmurverket med fogytor i det närmaste vinkelräta mot kraftriktningen. Slutligen utfördes formsättning och armering samt kontinuerlig gjutning av betongen i fundamentets övre del. Korsarmeringen under lagerstolarna består av tre lager 25 mm rundjärn på 200 mm avstånd från mitt till mitt och ytarmeringen av 16 mm rundjärn på 300 mm avstånd frå mitt till mitt.

För undervattensgjutningen hava använts 370 kg cement per kubikmeter betong. Aterstoden har gjutits med 300 kg cement per kubikmeter, utom anfangspartierna under lagren, som hava 400 kg cement per kubikmeter. Ovanför +5,25 har använts ett lảngsamt hårdnande cement, men för övrigt vanligt A-cement. Förstnämnda silikatrika cement framställdes vid Limhamns cementfabrik speciellt för detta ändamål och var en föregångare till de nu i marknaden förekommande s. k. »vattenbyggnadscementen», vilka bl. a. hava egenskapen att genom väsentligt minskad värmeutveckling i förhållande till vanligt $A$-cement minska risken
för sprickbildning vid gjutning av stora monoliter. Mellanpelarens båda fundament innehålla tillsammans cirka 2.700 kbm betong, varav cirka 1.400 kbm undervattensgjutning, samt cirka 42 ton armeringsjärn. I samtliga bảgfundament ingå tillsammans 5.043 kbm betong och 86,3 ton armeringsjärn.

Brons fundament hava utförts på entreprenad av Byggnadsaktiebolaget Contractor i Stockholm med Aktiebolaget Förenade Granitindustrier i Göteborg som underleverantör för stembeklädnaden och dess inmurning. Ankarbultar och stag med härtill hörande anordningar hava levererats och uppsatts av Aktiebolaget Götaverken i Göteborg. Arbetet med fundamentens utförande påbörjades i juli 193I och avslutades i september 1932.

## C. Stảlöverbyggnaden.

Det förslag till Västerbrons stålöverbyggnad, som av hamnstyrelsen slutligen utarbetades för att läggas till grund för utförandet, skilde sig såtillvida från det förslag, som tidigare hade förelagts stadsfullmäktige, att bågarna nu skulle utföras såsom helt inspända, medan de förut varit avsedda att utföras såsom tvåledsbågar. Leveransen överlämnades genom kontrakt den 16 juli 1932 till Aktiebolaget Lindholmen-Motala i Motala, Vereinigte Stahlwerke, Aktiengesellschaft, i Dortmund (numera Dortmunder Union Brückenbau Aktiengesellschaft, Vereinigte Stahlwerke) och Aktiebolaget Ekensbergs Vary i Stockholm, vilka tillsammans avgivit det lägsta »kombinerade» anbudet. Leveranssumman utgjorde 4.995.000 kronor. Bågarnas huvudreglar skulle tillverkas i Dortmund av tyskt material, medan allt övrigt material och arbete skulle framställas i Sverige. Enligt kontraktet skulle bågarna utföras såsom nitade konstruktioner, medan övriga delar av arbetet skulle svetsas. Genom att använda svetsning i denna utsträckning ernåddes en kostnadsbesparing, huvudsakligen på grund av materialvinst, av cirka 200.000 kronor. För framställning av det utländska stålmaterialet skulle användas uteslutande svensk järnmalm. Vid utförandet hava kon-



Fig. 7. Bägarnas utbildning vid anfangen.
traktets bestämmelser i förevarande avseenden uppfyllts, med undantag av att tvärbalkarna på hemställan av leverantören utförts såsom nitade konstruktioner, utan att detta medfört ändring i leveranssumman. Stålöverbyggnaden har en sammanlagd vikt av 6.940 ton, varav 3.II 6 ton utländskt och 3.824 ton svenskt material.

Arbetet med uppsättandet av stålöverbyggnaden har handhavts av ett av entreprenörerna bildat gemensamt företag. Verkstadsaktiebolaget Västerbron under ledning av överingenjören J. Sprau från Dortmund.

Stålöverbyggnaden består av två huvuddelar, nämligen bågarna med tillhörande tvärförband samt den av kolonner uppburna brobanekonstruktionen. En sammanhängande platta av armerad betong på lång- och tvärbalkar bildar brobanedäcket.

## 1. Bảgarna.

Vart och ett av bågspannen består av tvenne inspända plåtbågar, ställda på 18 m inbördes avstånd från mitt till mitt. Bågarnas mått och konstruktiva utbildning framgå av pl. 2 samt fig. 7 och 8. De äro utförda med lådsektion och
hava en konstruktionshöjd i hjässan och vid anfangen av 2,5 resp. $4,6 \mathrm{~m}$ för de större bà garna och 2,0 resp. 4,0 m för de mindre. Bågarnas övre flänsplåt har en bredd av $1,62 \mathrm{~m}$, och det invändiga avståndet mellan livplåtarna är $1,16 \mathrm{~m}$. Bågarna äro sinsemellan förbundna med transversaler på normalt $12,9 \mathrm{~m}$ avstånd i horisontalled samt K-diagonaler, fig. 9. Såväl bảgar som tvärförband äro nitade.

Bågarna äro inspända vid anfangen medelst tvenne vipplager av stål-


Fig. 8. Äudparti av $20+$ m.-bâgen. gjutgods och de förut nämnda ankarstagen, fig. IO och II. Varje lager består av två delar: skon, som är instucken i och fastskruvad vid plåtkonstruktionen, och den till fundamentet anslutande lagerstolen. I bågens längdriktning hava lagren justerats medelst stålkilar, och i förhållande till fundamenten hava lagerstolarna reglerats med tillhjälp av särskilda i betongmurverket fästade ställskruvar. Lagerskorna fasthållas av ankarbultarna, 8 st. i varje lager, medelst muttrar på sfäriska underläggsbrickor. Det spelrum mellan lagerskon och plåtkonstruktionen, som erfordrades för att möjliggöra bảgens inkantring över skorna vid monteringen, utfylldes med passbitar, innan hopborrningen och fastskruvningen med hårt drivna svarvade bultar ägde rum. Efter injusteringen göts under lagerstolarna ett 10 cm tjockt cementbruksskikt, innehållande 400 kg cement pr kbm.


Fig. 9. Transversaler och $K$-diagonaler mellan bägarna.

Bågarna hava tillverkats i cirka 13 m längder, motsvarande fackvidden, med undantag av ändfacken, som på grund av den stora vikten delats med en skarv på mitten. I verkstadshallen i Dortmund utlades och sammanborrades tvenne båghalvor åt gången, fig. 12. Nitningen verkställdes med hydraulisk nitmaskin på alla ställen, som voro åtkomliga med sådan maskin, fig. I3. I övrigt användes lufthammare. Från Dortmund transporterades bågarna i delar, vägande högst 55 ton, efter omlastning i Rotterdam båtledes till Ekensbergs varv cirka 2 km från brostället. Här lossades bromaterialet med hamnstyrelsens 60 tons pontonkran och upplades med tillhjälp av en på spår rörlig bockkran på en parallellt med varvets kaj uppbyggd fast ställning, som rymde två bảghalvor i bredd åt gången. Efter hopnitningen förhalades en båghalva åt gången på specialvagnar och tvärgående banor ut utanför kajen, där den överfördes på ett av fyra sektioner av varvets flytdocka bestående pon-


Fig, Io. Bäglager vid anfangen och i hjässan.
tonkoppel, fig. 14, samt bogserades till broplatsen, fig. 15. Här inlades båghalvorna i tur och ordning, utgående från det mindre spannets


Fig. IT. Bäglagren vid anfangen. nordvästra båghalva, på provisoriska upplag dels vid anfangen, dels i spannets mitt. De förstnämnda stöden utgjordes av hängramar, som omfattade betongmurverken och som i undre kanten voro utbildade till en plattform, på vilken bågen vridbart lagrades i ett på rullar vilande stativ, med tillhjälp av hydrauliska domkrafter reglerbart i alla riktningar, fig. 16 . Stödet vid spannens mitt utgjordes av ett fackverkstorn av stål på pålgrundläggning, fig.


Fig. 12. Tvà bảghalvor i verkstadshallen i Dortmund.
17. I det mindre bågspannet vilade tornet på 84 st. grova, ${ }^{15}-18 \mathrm{~m}$ lảnga träpålar, nedslagna till fast botten i fyra grupper. I det större spannet, där största djupet till berg uppgick till ej mindre än $37,5 \mathrm{~m}$, utgjordes grundläggningen för tornet av 69 st. järnpålar med en maximilängd av 35 m . Pålarna, som hade tillverkats vid Ekensbergs varv, voro sammansvetsade till en lådsektion av tvenne spontjärn, system Larssen Union Kastenprofil nr 2, och försedda med påsvetsad pålsko av stål. Nedslagningen av såväl trä- som järnpålarna skedde med tillhjälp av en 15 -tons pontonkran, som var utrustad med anordningar för pålslagning. Hejarens vikt var 4 ton, och järnpålarna vägde högst 5,4 ton. Genom provpålning och provbelastning utröntes, att under för handen varande betingelser en träpåle kunde belastas till 30 ton och en järnpåle till 60 ton med 2,5 -faldig säkerhet utan nämnvärda sättningar.

På en rustbädd av helvalsade och nitade stålbalkar i två


Fig. 13. Hydraulisk nitmaskin i Dortmund.
mot varandra vinkelräta lager ovanpå påloken reste sig lyfttornet till en höjd av 33 m över m.v.y., fig. I8. I plan hade tornet en utsträckning av II, 5 m i brons längdriktning och 25 m i tvärriktningen. Tornets höjd och bärförmåga hade bestämts med hänsyn till, att det efter lyftningen av det mindre spannets bågar skulle överflyttas till det större spannet och där ånyo användas för samma ändamål. I hisstornets topp var anordnad en arbetsplattform med hydrauliska domkrafter och länkkättingar för lyftning av bågarna.

Inläggningen av båghalvorna på sina resp. platser skedde i regel så, att pontonkopplet med bågen ombord förhalades i brons tvärriktning. I samband härmed avlägsnades tillfälligt hinderliga konstruktionsdelar i hisstornets understa fack för att återinsättas efter inhalningen. Bågarnas avlastning från transportkopplet skedde genom vattenfyllning av docksektionerna.


Fig. 14. Bäghalvor upplagda vid Ekensbergs varv.

I fråga om det mindre spannet lade vattenledningsbanken delvis hinder i vägen för inhalning av bågarna vilande på flytdockan enbart. Från bågfästet vid Kungsholmsstranden utlades därför en tvärbana av stålbalkar, på vilken den med en snabelformig förlängning försedda bågens anfangsända förhalades medelst en vagn, medan den andra ändan uppbars av flytdockan i första skedet och därefter av en vagn, förskjutbar på en löpbana i hisstornets undre del, fig. 19.

Liggande i horisontalt läge på de provisoriska stöden sammankopplades båghalvorna parvis med sina tvärförband, vilka senare tillverkades av Motala Verkstad. Med endast fästbultar i förbandets knutpunkter restes bågarna därefter parvis, fig. 20 och 21. För resningen av varje båghalva användes två par länkkättingar och domkrafter, med vilka lyftningen växelvis ägde rum. Bågen vilade under lyftningen på en i kättingarna upphängd tvärbalk. Genom lyftning växelvis med det ena och det andra kättingparet kommo kättingarna efter varje lyftning att automatiskt återtaga ver-


Fig. 15. Bäghalva under bogsering till broplatsen.
tikalt läge. I första omgången lyftes bågarna upp till $1,6 \mathrm{~m}$ under slutläget. Allt eftersom lyftningen fortskred, borttogos och återinsattes transversaler och diagonaler i de tornfack, som genomlöptes av bågarna. Under lyftningen roterade bågarna omkring de provisoriska vridningstapparna vid anfangen, varvid bågarnas rörelse reglerades med domkrafterna på sådant sätt, att de i förväg uppmonterade och påskruvade lagerskorna passade in i de härför avsedda hảlrummen i plåtkonstruktionen, fig. 22. Lyftningen försiggick med en hastighet av omkring $0,5 \mathrm{~m}$ i timmen.

Sedan bågarnas läge vid anfangen slutjusterats, sammanborrades och hopfästades lagerskorna samt plåtkonstruktionen medelst svarvade bultar. Samtidigt pågick nitningen av tvärförbandet från hängställningar i knutpunkterna.

Lyftningen av bågarna till full höjd försiggick med bägge bågparen samtidigt, och slutningen i hjässan ägde rum med tillhjälp av justerbara killager av stålgjutgods, som insattes mellan livplåtarna, fig. 10 . Spelrummet mellan bågarna i hjässan uppgick vid slutningen till 700 mm . Till


Fig. 16. Mellanpelarens fundament med hängramar.
sist reglerades killagren i hjässan och vid anfangen med tillhjälp av manometerförsedda hydrauliska domkrafter, uppställda på lyfttornet under bågarna på sådant sätt, att dragningen i de övre anfangslagrens ankarbultar med beaktande av ytterligare tillkommande belastningar av påbyggnadens egen vikt inkl. brobana, trafik, temperatur och vind, sammanlagt icke skulle överstiga 550 ton, i det närmaste motsvarande ett optimum med hänsyn till spänningstillståndet i bågarna under olika belastningsförhållanden. Efter bågarnas avlastning från lyfttornet kontrollerades spänningstillståndet i dem medelst tensometrar (spänningsmätare). I första stadiet efter avlastningen verkade bågarna som enledsbågar. I detta spänningstillstånd sammannitades de i hjässan, fig. 23 .

Metoden att använda lyftning vid montering av broöverbyggnader av stål är icke ny. Det finnes flera exempel på broar betydligt större än Västerbron, vilkas överbyggnader monterats på likartat sätt. Den hade även med framgång använts vid uppförandet av den nya Tranebergsbron. Det till-


Fig. 17. Pälgrund för lyfttorn i 204 m-spannets mitt.
vägagångssätt, som kommit till användning vid Västerbron, kännetecknas emellertid av många nya uppslag och detaljanordningar, vilka tack vare en väl genomtänkt planläggning samt förtjänstfullt genomförande från leverantörernas och arbetsledningens sida medfört, att monteringen av bågarna kunnat ske på det utmärkta sätt, som här varit fallet.

## 2. Bågarnas päbyggnad och viadukterna.

Som förut nämnts, uppbäres brobanedäcket av ett system lång- och tvärbalkar, vilka i sin tur vila på kolonner på $12,9 \mathrm{~m}$ inbördes avstånd i brons längdriktning och $18,0 \mathrm{~m}$ avstånd i dess tvärriktning, fig. 25. Enligt detta system äro såväl bågarnas påbyggnad som viadukterna över land utbildade.

Lång- och tvärbalkarnas konstruktiva utbildning framgår av fig. 26 och 27 . De förra - 10 i varje fack med 2,13 m avstånd från mitt till mitt - äro helsvetsade och kontinuerligt anslutna till tvärbalkarna, fig. 28. De yttre balkarnas bottenflänsar äro kraftigare utbildade än de övrigas, enär de även tjänstgöra som ramstycken i horisontalförban-


Fig. 18. Lyfttorn för 204 m-spannet.
det under brobanan. Tvärbalkarna hava en längd av 19,15 m och äro i huvudsak nitade. Endast långbalkarnas anslutningskonsoler och livplåtens avstyvningar äro svetsade. I tvärbalkarnas livplåtar äro upptagna hål för inläggning av


Fig. 19. 168 m-spannets snabelformiga förlängning.
gas- och vattenledningsrör samt elektriska ledningar. I mitten av varje fack äro långbalkarna sammankopplade med svetsade lastfördelningsbalkar. Horisontalförbandet under brobanan består av svetsade K-diagonaler med T-sektion.

De rörformiga kolonnerna, som uppbära brobanekonstruktionen, bestå av kallbockad stålplåt med $600-700 \mathrm{~mm}$ yttre rördiameter, fig. 29. I sin längdriktning äro rören stumsvetsade, i tvärriktningen äro de skarvade medelst invändiga påläggsplåtar och utvändigt försänkta nitar. De hermetiskt tillslutna plåtrören äro invändigt strukna med blymönja och rostskyddsolja samt kunna spolas genom upptill och nedtill upptagna hål, som tillslutas med metallproppar.

Under brobanan äro upphängda tre revisionstraverser, en under Kungsholmsviadukten, en under Långholmsviadukten och en under påbyggnaden mellan bågarna, fig. 30. Varje travers har en längd av $16,6 \mathrm{~m}$ mellan upphängningspunkterna och är försedd med elektrisk drivanordning. Vidare är traversen i bägge ändar utrustad med teleskopiskt


Fig. 20. Lyftning av bảgarna.
förskjutbara arbetsplattformar jämte höj- och sänkbara korgar, från vilka revision och målning av viadukternas stålkonstruktioner bekvämt kunna utföras.

De första kolonnerna närmast viaduktfästet på Kungsholmen restes med tillhjälp av tvenne trämaster och lyftblock. Med samma hjälpmedel inlades första tvärbalken samt första fackets långreglar jämte lastfördelningsbalkar och förband. Den fortsatta monteringen av viadukten försiggick med tillhjälp av en 20 tons derrickkran, som fullständigt behärskade ett fack av viadukten. Kranen flyttades framåt på ett spår av träsyllar och järnvägsräls ovanpå långreglarna. Uppsättningen av ett fack tillgick på följande sätt, fig. 3r. På framsidan av de senast uppresta kolonnerna upphängdes tvenne lätta fackverkskonsoler av stål, motsvarande facklängden. I sidled stagades konsolerna med K-diagonaler till den bakomvarande tvärbalkens mitt. Därefter upprestes nästa kolonnpar, som fast-


Fig. 21. 204 m-spannets norra bágar hängande i lyfttornet.
gjordes provisoriskt i konsolernas främre ändar och stagades sinsemellan med justerbara rundjärnskryss. Sedan därefter tvärbalken inlagts på kolonnernas dubblager, följde långbalkarnas inläggning, först kantbalkarna och därefter mellanbalkarna. Slutligen insattes lastfördelningsbalkarna i fackets mitt samt horisontalförbandets diagonaler.

Svetsningen utfördes och övervakades från en i brobanebalkarna upphängd arbetsplattform av plank på helvalsade balkar över fem fack. Under normala förhållanden uppsattes ett fack på tre arbetsskift à 8 timmar. Svetsningen påbörjades, så snart några fack blivit uppmonterade och avslutades någon månad efter montagets fullbordande. Arbetet utfördes av sex à åtta svetsare under ledning av en tysk svetsmästare. Med hänsyn till de stora krav på noggrannhet, som måste ställas på detta arbete, tillämpades ej ackord, utan arbetarna avlönades enligt ett system med förhöjda timpenningar, som ökades i mån av visad yrkesskicklighet.


Fig. 22. Bâgens invridning över lagren.
3. Material och tillverkning.

Bågar och tvärbalkar äro tillverkade av kopparmanganlegerat stål St. 52, under det att övriga delar av stålöverbyggnaden med undantag av lagren äro utförda av stål St. 44 . För höjning av korrosionsmotståndet (rostbeständigheten) är jämväl det senare materialet legerat med o,25-0,35 \% koppar. Ur hållfasthetssynpunkt hava på dessa materialier uppställts följande minimifordringar:

|  | ${ }^{\delta} B$ <br> $\mathrm{~kg} / \mathrm{cm}^{2}$ | ${ }^{\delta}{ }_{S}$ <br> $\mathrm{~kg} / \mathrm{cm}^{2}$ | $\uparrow$ <br> $\%$ |
| :--- | :---: | :---: | :---: |
|  |  | 5200 | 3600 |
| St. 52 | 20 |  |  |
| St. 44 | 4400 | 2600 | 20 |

där $\delta_{B}$ betecknar materialets brotthållfasthet, $\delta_{s}$ undre sträckgränsen och $\kappa$ förlängningen på normal mätlängd. Stålgjutgods Stg 50 skulle hava en minimibrotthållfasthet av $5.000 \mathrm{~kg} / \mathrm{cm}^{2}$ och minst $16 \%$ förlängning på halvnormal mätlängd. Motsvarande hållfasthetsfordringar för smitt stål St. 55 med $0,35 \%$ kolhalt voro $5.500 \mathrm{~kg} / \mathrm{cm}^{2}$ brotthållfasthet och $25,5 \%$ förlängning.

Vidare har uppställts den fordran på materialet, att den slagna niten efter avsvalningen skulle uppvisa samma hållfasthetsegenskaper som grundmaterialet, d. v. s. det material, som skulle nitas. Vid nitmaterialets mottagande kontrollerades uppfyllandet av detta villkor genom undersök-


Fig. 23. Bägarnas utbildning i hjässpartict.
ning, att det obearbetade materialets hållfasthet stod i en bestämd, på erfarenheter från talrika försök grundad relation till den slagna nitens. För nitade konstruktioner av stål St. 52 visade sig ett nitmaterial av St. 44 uppfylla dessa fordringar.

Vid nitningen av bågarna med ända till 8 gods och en sammanlagd tjocklek av 160 mm nedlades stor möda och omsorg på att åstadkomma ett i alla avseenden förstklassigt nitarbete. I Dortmunder Unions verkstäder utfördes all grövre nitning, där så kunde ske, med tillhjälp av en hydraulisk nitmaskin med 58 tons klämkraft och automatisk tryckreglering, fig. I3. Övrig nitning utfördes med lufthammare. För att åstadkomma en bättre utfyllning av nithålet, än som sker vid vanlig nitning, förstukades nitskaftet genom några slag på en i en särskilt konstruerad tång anbragt dorn, innan nithuvudet utbildades - >das Edelnietverfahren» som tyskarna kalla det. Förstukning förekom vid slagning av nitar med $28-32 \mathrm{~mm}$ diameter och över 100 mm klämlängd på niten. Även vid sammannitningen av bågarna på Ekensbergs Varv tillämpades förstukningsförfarandet vid slagning av grövre och längre nitar.

St. 52-materialet till bågarna har levererats av Vereinigte Stahlwerke AG och liknande material till tvärbalkarna av


Fig. 24. Västerbron under byggnad. Flygfoto O. Bladh.

Strömsnäs Jernverks AB., som även levererat allt övrigt valsmaterial, St. 44 och 37, utom helvalsade balkar till traversbanorna, som tagits från Tyskland. Allt stålgjutgods och maskingods har levererats av Motala Verkstad.

## 4. Svetsningsarbetet.

Tillverkningen av stålöverbyggnaden är av särskilt intresse, ej minst ur den synpunkten, att svetsning vid utförande av en brobyggnad här för första gången i vårt land kommit till användning i osedvanlig stor utsträckning. Vid infordrandet av anbud på stålöverbyggnaden för Västerbron lämnades frihet för anbudsgivarna att inkomma med alternativa anbud på svetsning i den omfattning, som kunde anses lämplig. I det antagna anbudet förutsattes svetsning av lång-, tvär- och fördelningsbalkar jämte horisontalförband och kolonner. Som redan framhållits, ernåddes härigenom en prisreduktion av c:a 200.000 kronor i jämförelse med helt nitade konstruktioner.


Fig. 25. Västerbron scdd underifrân.

Vid denna tidpunkt var svetsningsförfarandet, särskilt vid tillverkning av brokonstruktioner ganska oprövat, och inom landet saknades helt och hållet erfarenhet på områ-

## Längbalkar.



Fig. 26. Lång- och tvärbalkar.
det. En viss tveksamhet gjorde sig därför gällande rörande lämpligheten att använda detta förfaringssätt i den utsträckning, som ifrågasattes. Innan avgörandet skedde, lät hamnstyrelsen i Tyskland företaga en ingående undersökning av svetsningsteknikens dåvarande ståndpunkt och möjligheter. Det framgick därvid, att erfarenheterna från där utförda brobyggnader - låt vara av mindre storlek voro så gynnsamma, att någon risk att tillämpa svetsningsförfarandet vid Västerbron icke kunde anses föreligga.

Det är i detta sammanhang av intresse, att vissa restriktiva uttalanden, som då gjordes av Tysklands främsta experter på området, numera äro föråldrade. Betänkligheterna mot utförandet av fackverkskonstruktioner, t. o. m. för järnvägsbroar, äro hävda, och svetsning på broplatsen inger icke längre några farhågor.

Som kriterium på god svetsbarhet hos stål St. 52, vilket


Fig．27．Viadukten pä Kungsholmen．
skulle användas till tvärbalkarna，hava uppställts följande fordringar på materialets kemiska analys：

| Kol | ₹ $0,20 \%$ med $+0,02 \%$ tolerans |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Svavel | ₹ $0,60 \%$ | 》 | ＋0，03\％ | » |
| Mangan | ₹ $1,20 \%$ | 》 | ＋0，04\％ | 》 |
| Koppar | ～0，50 \％ |  |  |  |
| Krom | ～0，70 \％ |  |  |  |

Ett stål，som motsvarade dessa fordringar，framställdes och levererades för ändamålet av Strömsnäs Jernverks AB．Av tillverkningstekniska skäl blevo tvärbalkarna se－ dermera icke svetsade utan nitade．

Då Västerbrons stålöverbyggnad utlämnades på entrepre－ nad，funnos ännu inga svetsningsföreskrifter i Sverige．I kontraktet föreskrevs därför，att förutom vissa angivna all－ männa riktlinjer de tyska svetsningsnormerna DIN 4100 av år 1931 i huvudsak skulle ligga till grund för beräk－


Fig. 28. Lângbalkarnas anslutning till tvärbalkarna.
ning och tillverkning av de svetsade konstruktionerna. Allt eftersom tillverkningen fortskred, utarbetades emellertid med stöd av erfarenheter, vunna dels vid detta arbete, dels vid de samtidigt pågående svetsningsarbetena vid den nya Tranebergsbron, »Preliminära bestämmelser för beräkning, provning och kontroll av svetsade stålkonstruktioner», vilka i fortsättningen tillämpades jämväl vid tillverkning och kontroll av de svetsade konstruktionerna i stålöverbyggnaden till Västerbron.

Förutom de vanliga provnings- och kontrollåtgärder, som stadgas i dessa bestämmelser, provbelastades var 10 :e långbalk i verkstaden för $36 \%$ större böjningsmoment och 50 \% större avskärningskraft än de, som legat till grund för dimensioneringen. Härjämte belastades en långbalk till sammanbrott, varvid deformationen drevs så långt som möjligt. Vid provbelastning av det förstnämnda slaget höllo sig de uppmätta nedböjningsvärdena alltid lägre än de beräknade, och i senare fallet var belastningen i det ögonblick, då den kvarstående formförändringen började, större än den beräknade. Varken i ena eller i andra fallet kunde sprickbildningar eller fel i svetsfogarna upptäckas.

I överbyggnaden ingå c:a 2.000 ton svetsade stålkonstruktioner, vartill åtgått sammanlagt 605.860 elektroder med en totalvikt av 47 ton. Sammanlagda svetslängden uppgår till 80 km .

Svetsningsarbetet, som torde höra till de mest omfattande, som hittills förekommit vid någon bro, har på förtjänstfullaste sätt utförts av Motala Verkstad och Verkstadsaktiebolaget Västerbron, som därmed lämnat ett betydelsefullt bidrag till svetsningsteknikens utveckling i vårt land.
5. Målning.

Alla i bron ingående stålkonstruktioner hade före avsändningen till broplatsen grundmålats en gång med väl täckande blymönja, bågarna genom bestrykning för hand, övriga konstruktioner utom kolonnerna genom sprutmålning. Sedan brokonstruktionen färdigställts på broplatsen, har den åter målats en gång med mönja och därefter två gånger med pansarfärg, som vid första bestrykningen var försatt med $5 \%$ och i den andra med $10-15 \%$ aluminiumpulver, räknat på färgens totala vikt. På broplatsen anbragtes mönjefärgen genom bestrykning för hand, medan pansarfärgen båda gångerna sprutmålades, fig. 32 och 33. På


Fig. 29. Rörformig kolonn. insidan hava bågarna bestrukits två gånger för hand med blyvitt i ljusgrå färgton. De målade ytorna hava en storlek av sammanlagt 67.000 kvadratmeter. Sprutmålningen, som i vårt land in-


Fig. 30. Revisionsiravers.
troducerades för ifrågavarande ändamål vid Tranebergsbrons stålöverbyggnad, har fått sin hittills största användning inom landet vid Västerbron. Stålkonstruktionen har genom den valda färgen fått en silverglänsande ton. Denna färg


Fig. 31. Viaduktens montering. reflekterar solvärmet bättre än andra färger och minskar alltså temperaturspänningarna i bågarna. För brons målning hava åtgått cirka 20.000 kg mönjefärg och cirka 20.000 kg aluminiumblandad pansarfärg. Målningsarbetet har ingått i broentreprenörens åtagande och på broplatsen utförts av målerifirman Erik Andersson i Lit som underentreprenör.


Fig. 32. Sprutmålning av bảge.


Fig. 33. Sprutmälning av kolonn.

